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Abstract

New convergence bounds are presented for weighted, preconditioned, and deflated GMRES
for the solution of large, sparse, nonsymmetric linear systems, where it is assumed that the
symmetric part of the coefficient matrix is positive definite. The new bounds are sufficiently
explicit to indicate how to choose the preconditioner and the deflation space to accelerate
the convergence. One such choice of deflating space is presented, and numerical experiments
illustrate the effectiveness of such space.
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1 Introduction

Our aim in this paper is to study effective solutions of linear systems of the form

Ax = b, A ∈ Kn×n, (1)

where K = R or C and A is a large sparse nonsingular matrix. Particular emphasis will be
on the cases where A has a positive definite Hermitian part. We refer to such matrices A as
positive definite matrices.

We are interested in studying effective approaches to accelerate the convergence of the
well-known and widely used GMRES method [19] for the solution of linear systems. There
are essentially three components for a successful strategy for this accelerations, which can be
used alone or be combined:

• preconditioning,

• weighting,

• deflating.

Standard references for preconditioning include [2, 18, 20]; for weighted GMRES [8, 10, 14]; and
for deflation [4, 6, 9, 12], and more recently [11]. Here, we denote the weighted preconditioned
and deflated GMRES algorithm as WPD-GMRES, and corresponds to the case where all three
acceleration tools are used.

Our objective in this paper is to propose a new convergence bound for WPD-GMRES
that is sufficiently explicit to indicate how to choose the preconditioner, weight matrix, and
especially deflation spaces. The new results generalize those in [22] where deflation was not
considered. Here also, special emphasis is on Hermitian preconditioning and on applying
WPD-GMRES in the preconditioner norm, an idea already present in [5, 25].

In particular, in Section 6, we present a result explicitly giving conditions on the precon-
ditioner and the deflation spaces so as to assure fast convergence. Then, in Section 7, we
propose a new deflation space which is inspired by this new bound. Numerical experiments in
Section 8 illustrate the new results with the choice of new space, and show its effectiveness.

In part inspired by the success of the GenEO coarse space [23, 24], and as already men-
tioned, by the new bounds we obtain, we use as a deflation space, appropriately chosen eigen-
vectors of the generalized eigenvalue problem Nz = λMz, where M is the Hermitian part of
A, which is assumed to be positive definite, and N is the skew-Hermitian part of A.

2 Preliminaries

We begin by stating some results for weighted GMRES for singular systems. As we describe
in the next section, deflating produces a consistent singular system and thus, analyzing the
singular case will be useful for our analysis of deflated GMRES.

Weighted GMRES is the version of GMRES in which a general inner product 〈·, ·〉W
replaces the Euclidean inner product [10]. The Hermitian positive definite (hpd) matrix W
such that 〈x,y〉W = 〈Wx,y〉 will be referred to as the weight matrix. The user inputs an
initial vector x0 ∈ Kn. The approximate solution at iteration i is then characterized by

‖ri‖W = min {‖b−Ax‖W; x ∈ x0 +Ki} , (2)

where Ki is the Krylov subspace

Ki = Ki(r0,A) = span{r0,Ar0, . . . ,A
i−1r0}; r0 = b−Ax0. (3)

GMRES for singular systems is studied in [3] and [15] (where GCR is also considered). A
very useful result is recalled in Theorem 1 with a straightforward generalization to weighted
GMRES. The proof of [3, Theorem 2.6] applies here with the change of inner product.
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Theorem 1. Suppose that range(A)∩ker(A) = {0}. If Ax = b is consistent, i.e., if it admits
a solution, then weighted GMRES determines a solution without breakdown at some step and
breaks down at the next step through degeneracy of the Krylov subspace.

The takeaway from the theorem is that for consistent linear systems, under the condition
that range(A) ∩ ker(A) = {0}, we can proceed through the iterations in the same manner
as with nonsingular systems. In exact arithmetic, the characterization (2) of the iterate xi
remains valid until the algorithm breaks down, at which point the exact solution has been
found.

We continue in this preliminaries section by reviewing properties of the generalized eigen-
value problem we use for our new deflation space.

Lemma 1. Let us assume that M and N are two order n matrices with the further assumption
that M is hpd and N is skew-Hermitian. Consider the generalized eigenvalue problem for
matrix pencil (N,M): find λj ∈ C and z(j) ∈ Cn \ {0} such that

Nz(j) = λjMz(j). (4)

Then, the eigenvectors z(j) can be chosen to form an M-orthonormal basis of Cn, and the
eigenvalues λj are either 0 or purely imaginary.

Proof. We first prove that the eigenvectors can be chosen to form an M-orthonormal basis
of Cn. Let (λj , z

(j)) denote an eigenpair of the generalized eigenvalue problem (4). It is
immediate to observe that an equivalent eigenvalue problem is

M−1/2NM−1/2z̃(j) = λj z̃
(j); z̃(j) = M1/2z(j),

where M1/2 denotes the matrix square root of M.1

Matrix M−1/2NM−1/2 is skew-symmetric: (M−1/2NM−1/2)∗ = (M−1/2)∗N∗(M−1/2)∗ =
−M−1/2NM−1/2. Consequently M−1/2NM−1/2 is normal and the spectral theorem states
that it is unitarily diagonalizable:

M−1/2NM−1/2 = UDU∗,D diagonal, U unitary (i.e., U∗U = I).

It immediately follows, by setting V = M−1/2U that

V∗NV = D, D diagonal, V satisfies V∗MV = I, and that NV = MVD,

which is equivalent to

Nz(j) = λjMz(j), ∀j, j = 1, . . . , n where z(j), is the j-th column of V and λ(j) = Djj .

Thus, the eigenvectors in generalized eigenvalue problem (4) can be chosen to form an M-
orthonormal basis of Cn.

Next we prove that the non-zero eigenvalues are purely imaginary. Let (λk, z
(k)) denote

any eigenpair of the generalized eigenvalue problem (4) then

〈Nz(k), z(k)〉 = λk〈Mz(k), z(k)〉 = 〈z(k),N∗z(k)〉 = −〈z(k),Nz(k)〉 = −λk∗〈Mz(k), z(k)〉.

Since z(k) is an eigenvector, z(k) is non-zero. Consequently λk〈Mz(k), z(k)〉 = −λk∗〈Mz(k), z(k)〉
implies that λk + λk

∗ = 0 = 2<(λk).

Next we set M and N to be respectively the Hermitian and skew-Hermitian parts of A:

A = M + N, M =
A + A∗

2
and N =

A−A∗

2
· (5)

1By [17, theorem 7.2.6, page 439], M1/2 is well defined as the unique Hermitian positive semi-definite matrix
such that (M1/2)2 = M and moreover M1/2 is positive-definite because M is positive-definite.
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We prove a few straightforward properties of the eigenpairs. If (λk, z
(k)) denotes an eigenpair

of the generalized eigenvalue problem (4) then

Az(k) = (M + N)z(k) = (1 + λk)Mz(k),

where (1 +λk) 6= 0 because <(λ(k)) = 0. Similarly, A∗z(k) = (1−λk)Mz(k) with (1−λk) 6= 0.
A consequence is that

span(Az(k)) = span(Mz(k)) = span(A∗z(k)).

Since M is invertible it also holds that

M−1Nz(k) = λkz
(k); (I+M−1N)z(k) = (1+λk)z(k); (I+M−1N)−1z(k) = (1+λk)−1z(k).

3 Weighted and Deflated GMRES

The purpose of deflation is to replace the linear system (1) by a projected linear system that
is easier to solve iteratively. The deflation operators are introduced next.

Definition 1. Let Y,Z ∈ Kn×m be two full rank matrices. Under the assumption that
ker(Y∗) ∩ range(AZ) = {0}, let

PD := I−AZ(Y∗AZ)−1Y∗ and QD := I− Z(Y∗AZ)−1Y∗A.

These are projection operators called the deflation operators.

The following lemma gives some simple but useful properties of the deflation operators.

Lemma 2. The deflation operators satisfy

PDA = AQD = PDAQD,

and

ker(PD) = range(AZ), range(PD) = (ker(P∗D))⊥ = ker(Y∗),

ker(P∗D) = range(Y), range(P∗D) = (ker(PD))⊥ = ker(Z∗A∗),

ker(QD) = range(Z), range(QD) = (ker(Q∗D))⊥ = ker(Y∗A),

ker(Q∗D) = range(A∗Y), range(Q∗D) = (ker(QD))⊥ = ker(Z∗).

Let x∗ be the solution of (1). We write x∗ = QDx∗ + (I − QD)x∗, and we rewrite the
linear system (1) as two independent linear systems for each of the two components as follows,

Ax∗ = b⇔ {PDAx∗ = PDb and (I−PD)Ax∗ = (I−PD)b}
⇔ {AQDx∗ = PDb and A(I−QD)x∗ = (I−PD)b} .

Each of the two linear systems can be solved by a different linear solver. On one hand,

(I−QD)x∗ = Z(Y∗AZ)−1Y∗b (6)

is computed with a direct solver. On the other hand, QDx∗ is computed by applying (pre-
conditioned) weighted GMRES to the consistent, so called deflated linear system

PDAx̃ = PDb (7)

and setting QDx∗ = QDx̃. This is justified by [11, Lemma 3.2] or by the following one-line
proof,

AQDx̃ = PDAx̃ = PDb = PDAx∗ = AQDx∗ ⇔ QDx̃ = QDx∗,

since A is nonsingular; see further [11, 27] for more details on deflated GMRES.
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In those references, and in this paper, it is implicitly assumed that the number of columns
m of Y and Z is not too large so that the solution of the solution of a linear system with
the m × m coefficient matrix Y∗AZ is not too expensive. Such solutions are needed when
computing (I−QD)x∗ as in (6), and at every application of PD and QD.

We now focus on solving (7). If weighted GMRES is applied directly to this projected
system, Theorem 1 tells us that weighted GMRES converges to the solution as long as
ker(PDA) ∩ range(PDA) = {0}, or by Lemma 2, if range(Z) ∩ ker(Y∗) = {0}. For the
iterative solution of this system (7), we consider the use of a preconditioner, as we discuss
next.

4 Weighted and Deflated right-preconditioned GM-
RES

Let H be a non singular matrix in Kn×n. We will call it the preconditioner. We precondition
the deflated system on the right, which means that we solve the following system,

PDAHu = PDb; and then set x̃ = Hu. (8)

In practice the algorithm is implemented in the x̃ variable rather than in the u variable. This
is trivial since the i-th residual is PDb−PDAHũi = PDb−PDAx̃i. The algorithm produces
approximate solutions for x̃ that we will denote by xi and that satisfy xi = Hui.

Equation (8) is a consistent linear system with a singular coefficient matrix PDAH. By
Theorem 1 (see also [11, Theorem 3.4]), weighted and deflated preconditioned GMRES con-
verges for every starting vector if

range(PDAH) ∩ ker(PDAH) = {0} ⇔ range(PD) ∩ ker(QDH) = {0},

since PDA = AQD. By Lemma 2, the condition can be rewritten as

ker(Y∗) ∩ range(H−1Z) = {0}.

Remark 1. This is the same condition as in [11, Theorem 3.5] where left preconditioning
is considered. Indeed, the Krylov subspaces Ki(PDAH,PDb − PDAHu0) with u0 = Hx0

and Ki(HPDA,HPDb −HPDAx0) stop growing at the same iteration, i.e., the coefficient
matrices have the same grades in the sense of [18, Section 6.2]. Indeed, Ki(HPDA,HPDb−
HPDAx0) = HKi(PDAH,PDb−PDAHu0) with x0 = Hu0.

The following theorem summarizes the two fundamental conditions that we have just iden-
tified.

Theorem 2. The deflation operators are well defined and weighted GMRES does not break
down when solving the deflated and preconditioned linear system (8) if

ker(Y∗) ∩ range(AZ) = {0} and ker(Y∗) ∩ range(H−1Z) = {0}.

Two cases stand out that will be useful further on in the article.

Lemma 3. If H is hpd and Y = HAZ, then the projection operator PD is orthogonal in
the H inner product. Moreover the condition ker(Y∗) ∩ range(AZ) = {0} in Theorem 2 is
automatically satisfied.

Proof. Let us assume that H is hpd, then

PD is H-orthogonal ⇔ ker(PD) ⊥H range(PD)

⇔ range(AZ) ⊥H ker(Y∗)

⇔ range(HAZ) = range(Y),
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a condition that is of obviously satisfied if HAZ = Y. It also follows from the assumptions
that

ker(Y∗) = ker((HAZ)∗) = (range(HAZ))⊥ = (range(AZ))⊥
H

so ker(Y∗)∩range(AZ) = {0}.

The following result gives a condition relating the preconditioner H and the choice of the
deflating subspace represented by Y.

Lemma 4. If Y is an invariant subset of H∗A∗, then QDHPD = HPD. Moreover, the two
conditions in Theorem 2 are equivalent.

Proof. Let Y be an invariant subset of H∗A∗. Since QD is a projection, QDHPD = HPD

if range(HPD) = range(QD) or equivalently ker(Y∗H−1) = ker(Y∗A) or, again equivalently
range(A∗Y) = range(H−∗Y). The condition holds if Y is an invariant subset of H∗A∗.
Moreover the conditions in Theorem 2 can be equivalently rewritten as

ker(Y∗A) ∩ range(Z) = {0} and ker(Y∗H−1) ∩ range(Z) = {0},

showing that they are equivalent when Y is an invariant subset of H∗A∗.

Remark 2. The projection operators PD and QD are entirely defined through their range and
their kernel. This means that, Y and Z need only be defined up to their ranges, not necessarily
for the particular choice of their columns.

5 Convergence of WPD-GMRES

Theorem 3. Assume that the two conditions from Theorem 2 are satisfied. Let θ(A,H,W,Y,Z),
indexed by the operator A, the preconditioner H, the weight matrix W as well as the deflation
spaces represented by Y and Z, be defined by

θ(A,H,W,Y,Z) := infy∈range(PD)\{0}
|〈PDAHy,y〉W|2

‖PDAHy‖2W‖y‖2W
· (9)

Then, at any iteration of WPD-GMRES (i.e., weighted GMRES applied to (8)) the relative
residual norm satisfies

‖ri‖2W
‖ri−1‖2W

≤ 1− θ(A,H,W,Y,Z),

where ri = PDb−PDAxi = PDb−PDAHui.

Proof. By Theorem 2, there is no breakdown until convergence has been achieved. So at
iteration i of weighted GMRES applied to (8) it holds that

‖ri‖W = min
{
‖PDb−PDAHu‖W; u ∈ u0 + span{r0,PDAHr0, . . . , (PDAH)i−1r0}

}
,

where r0 = PDb − PDAHu0 = PDb − PDAx0.Written in the x variable, the minimization
result is

‖ri‖W = min
{
‖PDb−PDAx‖W; x ∈ x0 + span{Hr0,HPDAHr0, . . . , (HPDA)i−1Hr0}

}
.

It can be seen that xi−1 + span(Hri−1) ⊂ x0 + span{Hr0,HPDAHr0, . . . , (HPDA)i−1Hr0}
and thus by taking the minimum over a smaller set, the minimum is no smaller, therefore,

‖ri‖W ≤ min {‖PDb−PDAx‖W; x ∈ xi−1 + span(Hri−1)}
= min {‖ri−1 −PDAy‖W; y ∈ span(Hri−1)}

= ‖ri−1 − αi−1PDAHri−1‖W with αi−1 =
〈PDAHri−1, ri−1〉W
‖PDAHri−1‖2W

·
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The value of αi−1 comes from projecting ri−1 W-orthogonally onto span(PDAHri−1). It now
holds that (ri−1 − αi−1PDAHri−1) ⊥W PDAHri−1 and

‖ri‖2W ≤ ‖ri−1 − αi−1PDAHri−1‖2W = ‖ri−1‖2W − |αi−1|2‖PDAHri−1 ‖2W .

The result follows by dividing by ‖ri−1‖2W and recalling that ri−1 ∈ range(PD).

Remark 3. The convergence bound in Theorem 3 is pessimistic for GMRES. Indeed, it is
derived from ‖ri‖W ≤ min {‖PDb−PDAx‖W; x ∈ xi−1 + span(Hri−1)} where the global
minimization property of GMRES has been deteriorated to minimizing over a one-dimensional
space. For this reason, the bound in Theorem 3 holds also for all restarted and truncated
versions of GMRES and even for the minimal residual algorithm. The remark carries over to
all convergence results in the article since they are essentially bounds for θ(A,H,W,Y,Z).

For left preconditioning, the same bound holds with the norms on the left hand side
replaced by the norms of the preconditioned residuals.

6 Hpd preconditioning for A positive definite

In the remainder of this article we make the following three assumptions, which are some-
how natural to consider.

• the coefficient matrix A is positive definite (in the sense that it has positive definite
Hermitian part),

• the preconditioner H is hpd,

• WPD-GMRES is applied using the inner product induced by the preconditioner, i.e.,
W = H.

The quantity in the convergence bound of Theorem 3 can now be rewritten as

θ(A,H,H,Y,Z) = infy∈range(PD)\{0}
|〈HPDAHy,y〉|2

‖PDAHy‖2H‖y‖2H
(10)

= infy∈range(HPD)\{0}
|〈PDAy,y〉|2

‖PDAy‖2H‖y‖2H−1

·

From here, two cases are considered that differ by the constraint imposed on the deflation
spaces. In each case, the objective is to make explicit a condition that must be satisfied by H,
Y and Z in order to ensure fast convergence. The results are summed up in the next theorem

Theorem 4. Let us assume that A is positive definite, H is hpd and W = H. Let

M =
A + A∗

2

denote the Hermitian part of A, and λmin(HM) and λmax(HM) denote the extreme eigenval-
ues of HM. The quantity θ in the convergence result of WPD-GMRES (Theorem 3) can be
bounded as follows.

1. If Y = HAZ, i.e., PD is H-orthogonal then

θ(A,H,H,Y,Z) ≥ λmin(HM)

λmax(HM)
× infy∈ker(Z∗A∗A−1)\{0}

|〈A−1y,y〉|
〈y,M−1y〉 ·

2. If Y is an invariant subset of HA∗ and ker(Y∗) ∩ range(H−1Z) = {0}, then

θ(A,H,H,Y,Z) ≥ λmin(HM)

λmax(HM)
× infy∈ker(Y∗)\{0}

|〈A−1y,y〉|
〈M−1y,y〉 ·
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Before we give the proof of the theorem, we observe that since the matrices H and M are
hpd, the eigenvalues of HM are real and positive.

Proof of Theorem 4.

1. This case corresponds to Lemma 3 where it is proved that only the condition ker(Y∗)∩
range(H−1Z) = {0} is necessary in order to ensure that WPD-GMRES does not break
down. Here, that condition is equivalent to ker(Z∗A∗) ∩ range(Z) = {0}. Let’s take a
vector Zz in that intersection: Z∗A∗Zz = 0 implies that

0 = 〈Z∗A∗Zz, z〉 = 〈Z∗MZz, z〉︸ ︷︷ ︸
∈R

−〈Z∗(A∗ −M)Zz, z〉︸ ︷︷ ︸
∈I

,

where I stands for the imaginary axis. The positive definiteness of A allows us to conclude
that z = 0 and that ker(Z∗A∗) ∩ range(Z) = {0}.
Letting y ∈ range(PD), i.e., y = PDy, and using the fact that HPD = P∗DH, the
numerator in (10) satisfies

|〈HPDAHy,y〉|2 = |〈P∗DHAHy,y〉|2 = |〈HAHy,PDy〉|2 = |〈HAHy,y〉|2.

The first term in the denominator satisfies

‖PDAHy‖2H ≤ ‖AHy‖2H ·

Thus,

θ(A,H,H,HAZ,Z) ≥ infy∈range(PD)\{0}
|〈HAHy,y〉|2

‖AHy‖H〈Hy,y〉

= infy∈range(HPD)\{0}
|〈Ay,y〉|2

‖Ay‖2H‖y‖2H−1

≥ infy∈range(AHPD)\{0}
|〈A−1y,y〉|
〈y,Hy〉 × infy∈range(HPD)\{0}

|〈Ay,y〉|
〈H−1y,y〉

≥ infy∈range(AHPD)\{0}
|〈A−1y,y〉|
〈y,M−1y〉 × infy∈range(AHPD)\{0}

〈M−1y,y〉
〈y,Hy〉

× infy∈range(HPD)\{0}
〈My,y〉
〈H−1y,y〉

≥ infy∈range(AHPD)\{0}
|〈A−1y,y〉|
〈y,M−1y〉 × infy∈range Kn\{0}

〈M−1y,y〉
〈y,Hy〉

× infy∈Kn\{0}
〈My,y〉
〈H−1y,y〉 ·

In the fourth line it was used that 〈My,y〉 ≤ |〈Ay,y〉|. The result in the theorem
is proved by recognizing that the two last terms are Rayleigh quotients for the pre-
conditioned operator HM, and recalling that range(PD) = ker(Y∗) = ker(Z∗A∗H)
(Lemma 2) so that range(AHPD) = ker(Z∗A∗A−1).

2. This case corresponds to Lemma 4 where it is proved that GMRES does not break down
as long as one of the conditions from Theorem 2 is verified, e.g., ker(Y∗)∩range(H−1Z) =
{0}. Taking from the lemma that QDHPD = HPD, using that PDA = AQD, and from
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the fact that y ∈ range(QD) implies y = QDy, we obtain

θ(A,H,H, Ỹ,Z) = infy∈range(QD)\{0}
|〈Ay,y〉|2

〈HAy,Ay〉〈H−1y,y〉

≥ infy∈range(QD)\{0}
|〈Ay,y〉|
〈HAy,Ay〉 × infy∈range(QD)\{0}

|〈Ay,y〉|
〈H−1y,y〉

≥ infy∈range(AQD)\{0}
|〈A−1y,y〉|
〈Hy,y〉 × infy∈range(QD)\{0}

〈My,y〉
〈H−1y,y〉

≥ infy∈range(AQD)\{0}
|〈A−1y,y〉|
〈M−1y,y〉 × infy∈range(AQD)\{0}

〈M−1y,y〉
〈Hy,y〉

× infy∈range(QD)\{0}
〈My,y〉
〈H−1y,y〉

≥ infy∈range(AQD)\{0}
|〈A−1y,y〉|
〈M−1y,y〉 × infy∈Kn\{0}

〈M−1y,y〉
〈Hy,y〉

× infy∈Kn\{0}
〈My,y〉
〈H−1y,y〉 ·

The result in the theorem is proved by recognizing that the two last terms are Rayleigh
quotients for the preconditioned operator HM, and recalling that, from Lemma 2,
range(QD) = ker(Y∗A−1) so range(AQD) = ker(Y∗).

Remark 4. In the proof of Theorem 6, in each case, the two matrices M−1 can be replaced
by any hpd matrix, and the thesis of the theorem changed appropriately.

In the case that Y = Z the two non-breakdown conditions are automatically verified if A
is positive definite and H is hpd. For this reason the choice Y = Z is quite natural. However,
there is no natural new lower bound of the convergence factor θ in this special case. What
it does hold is that if Y = Z then we can choose Y as an invariant subset of HA; see also
Remark 5 below.

7 A new spectral deflation space

In this section our objective is to compute Y and Z in such a way that the convergence of
WPD-GMRES is bounded explicitly. More precisely, following the results in Theorem 6 we
aim to find a subset of vectors that satisfy

|〈A−1y,y〉|
〈y,M−1y〉 ≥ γ

for some choice of γ. We will show that this can be done by computing eigenvectors of
a particular generalized eigenvalue problem. Then we connect them to our WPD-GMRES
bound by making explicit our choice of Y and Z.

7.1 Choice of deflation space and convergence of WPD-GMRES

Definition 2 (Deflation Space). Given a pd matrix A, let (λj , z
(j))j=1,...n denote the eigen-

pairs of generalized eigenvalue problem (4), i.e., Nz(j) = λjMz(j), with M and N the Hermi-
tian and skew-Hermitian parts of A as in (5). Let τ > 0. Consider the space

Z = span{z(k); |λk| > τ}.

Theorem 5. Let Z be as in Definition 2. Its orthogonal complement is the space Z⊥ =
{Mz(k); |λk| ≤ τ}. Moreover, any y ∈ Z⊥ \ {0} satisfies

|〈A−1y,y〉|
〈M−1y,y〉 ≥

1

1 + τ2
·
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Proof. Let y ∈ Kn. By Lemma 1, a set of n eigenvectors z(k) can be chosen to form an
M-orthonormal basis of Cn so that

y =

n∑
k=1

βkMz(k) with βk = 〈y, z(k)〉 ∈ C.

The characterization of Z⊥ comes from

y ∈ Z⊥ ⇔
(
y ⊥ z(k) if |λk| > τ

)
⇔ (βk = 0 if |λk| > τ)⇔ y ∈ span{Mz(k); |λk| ≤ τ}.

Now, take any y =
∑
k;|λk|≤τ

βkMz(k) ∈ Z⊥ (with βk = 〈y, z(k)〉). By the factorization

A = M(I + M−1 N), we obtain

A−1y = (I + M−1N)−1M−1y =
∑

k;|λk|≤τ

βk(I + M−1N)−1z(k) =
∑

k;|λk|≤τ

βk
1 + λk

z(k)

and

〈A−1y,y〉 =

〈 ∑
k;|λk|≤τ

βk
1 + λk

z(k),
∑

k;|λk|≤τ

βkMz(k)

〉
=

∑
k;|λk|≤τ

βkβk
1 + λk

·

Thus, the term in the numerator is

|〈A−1y,y〉| =

∣∣∣∣∣∣
∑

k;|λk|≤τ

βkβk(1− λk)

(1− λk)(1 + λk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k;|λk|≤τ

βkβk(1− λk)

1 + |λk|2

∣∣∣∣∣∣ ·
Using that λk = ±i|λk| and that |〈A−1y,y〉| ≥ max(|<(〈A−1y,y〉)|, |=(〈A−1y,y〉)|) we can
bound this term as follows,

|〈A−1y,y〉| ≥ max

 ∑
k;|λk|≤τ

βkβk
1 + |λk|2

,

∣∣∣∣∣∣
∑

k;|λk|≤τ

λkβkβk
1 + |λk|2

∣∣∣∣∣∣
 ≥ 1

1 + τ2

∑
k;|λk|≤τ

βkβk.

On the other hand, the denominator can be rewritten as

〈M−1y,y〉 = 〈
∑

k;|λk|≤τ

βkz
(k),

∑
k;|λk|≤τ

Mβkz
(k)〉 =

∑
k;|λk|≤τ

βkβk.

We finally obtain the result by division and simplification by
∑
k;|λk|≤τ

βkβk (which is not 0

unless y = 0).

Theorem 6. Let us assume that A is positive definite, H is hpd, and W = H. With Z as
introduced in Definition 2, the quantity θ in the convergence result of WPD-GMRES (Theo-
rem 3) can be bounded as follows. If either

1. range(Z) = Z and Y = HAZ, i.e., PD is H-orthogonal, or

2. range(Y) = Z, Y is an invariant subset of HA∗, and ker(Y∗) ∩ range(H−1Z) = {0}.
Then

θ(A,H,H,Y,Z) ≥ λmin(HM)

λmax(HM)
× 1

1 + τ2
·

Proof. In order to combine the results from Theorem 3 and Theorem 5, it only remains to
prove one identity in each case.

1. ker(Z∗A∗A−1) = range(A−∗AZ)⊥ = Z⊥ = range(Z)⊥. Indeed,

Az(k) = (1 + λk)Mz(k) and A∗z(k) = (1− λk)Mz(k)

so 1
1+λk

Az(k) = 1
1−λk

A∗z(k), i.e.,

A−∗Az(k) =
1 + λk
1− λk

z(k) with 1 + λk 6= 0 and 1− λk 6= 0.
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2. ker(Y∗) = range Y⊥ = Z⊥.

Remark 5. It must be noted that, in the case labeled 2, the two first assumptions are in
general not compatible: Z is not necessarily an invariant subset of HA∗. An exception is the
case where H = M−1, i.e., the problem is preconditioned by the inverse of the Hermitian part
of A. Then HA∗Z = Z since, for any eigenvector z(k), we have

HA∗z(k) = H(1− λ(k))Mz(k) = M−1(1− λ(k))Mz(k) = (1− λ(k))z(k).

The convergence result then holds for any Z such that ker(Y∗) ∩ range(H−1Z) = {0} , e.g.,
Z = Y or Z = MY or Z = M−1Y.

Remark 6. The case where no vectors are deflated corresponds to setting τ = ρ(M−1N)
(the spectral radius). In that case, the estimate in Theorem 6 is exactly the estimate in [22,
Corollary 4.4].

7.2 Real-valued Case

We consider now the case where A and b are real-valued. The solution will also be real-valued
and the iterative solver should be applied in R. In this case, the next theorem proposes an
alternate basis for the deflation space from Definition 2, for which the deflation operators PD

and QD are real.

Theorem 7 (Deflation Space (Real-valued case)). Given a pd real matrix A, let (λj , z
(j))j=1,...n

denote the eigenpairs of generalized eigenvalue problem (4), i.e., Nz(j) = λjMz(j), with M
and N the Hermitian and skew-Hermitian parts of A as in (5). Let τ > 0. The deflation
space Z from Definition 2 can also be written as

Z = span{{<(z(k)),=(z(k))}; |λk| > τ}.

Since λk = ±iµ, there are two eigenvectors with |λk| = µ. Therefore, it suffices to choose the
real and imaginary part of one of them to span the same subspace.

Proof. If A is real, the non-zero eigenvalues come in complex conjugate pairs. Indeed, let
(λ, z) denote an eigenpair of the generalized eigenvalue problem (4) with λ 6= 0. Then λ = iµ
where µ ∈ R, and it follows by taking the complex conjugate of (4) that

Nz = iµMz⇔ Nz = −iµMz.

So the complex-conjugate z is an eigenvector corresponding to eigenvalue −iµ = −λ. We
conclude by noticing that the space spanned by z and z is the same as the space spanned by
<(z) and =(z).

In other words, we choose as our deflation space, the real vectors which are the real and
imaginary parts of the eigenvectors of the generalized problem (4) corresponding to eigenvalues
larger than τ in modulus.

8 Numerical Illustration: Convection-Diffusion-Reaction

In this section, the problem considered is the convection-diffusion-reaction problem posed in
Ω = [−1, 1]2. It is a real-valued problem (K = R), so Hermitian means symmetric. The strong
formulation of the problem is:

c0u+ div(au)− div(ν∇u) = f in Ω,

u = 0 on ∂Ω.

The variational formulation is: Find u ∈ H1
0 (Ω) such that∫

Ω

((
c0 +

1

2
div a

)
uv + ν∇u · ∇v

)
︸ ︷︷ ︸

symmetric part

+

∫
Ω

(
1

2
a · ∇uv − 1

2
a · ∇vu

)
︸ ︷︷ ︸

skew-symmetric part

=

∫
Ω

fv,
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Figure 1: Example meshes. Left: 2373 vertices and 4568 triangles. Right: 8643 vertices and 16948
triangles.

IsoValue
-0.00424553
0.00212277
0.0063683
0.0106138
0.0148594
0.0191049
0.0233504
0.027596
0.0318415
0.036087
0.0403326
0.0445781
0.0488236
0.0530692
0.0573147
0.0615603
0.0658058
0.0700513
0.0742969
0.0849107

Figure 2: Left: Solution. Right: Partition into 16 subdomains for HDD

for all v ∈ H1
0 (Ω). The reaction coefficient c0 > 0 and viscosity ν > 0 are assumed to be

constant over Ω.
The right hand side is chosen as

f(x, y) = exp(−2.5(x2 + (y + 0.8)2)).

The convection field is parametrized by a constant η ∈ R and takes the values

a(x, y) = ηπ

(
−y − 0.8

x

)
.

It can be remarked that div a = 0.
The problem is discretized by Lagrange P1 finite elements on a triangular mesh. Two

example meshes are shown in Figure 1 with different levels of refinement. They are good
representatives of the meshes used throughout our numerical testing. We have deliberately
not chosen a regular mesh since this assumption is not required by our theory. The solution
is shown in Figure 2 (left). The WPD-GMRES algorithm is implemented in Octave while
the finite element matrices are assembled by FreeFem++ [16]. All iteration counts for WPD-
GMRES correspond to the number of iterations needed to reach ‖ri‖H < 10−10‖b‖H starting
from a zero initial vector. The Dirichlet boundary condition has been enforced by elimination.
Let (φi)1≤i≤n denote the P1 finite element basis corresponding to the mesh. The problem
matrix splits into

A = M + ηÑ, with M spd and Ñ skew-symmetric,
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where the entries of M and Ñ are

Mij =

∫
Ω

(c0φiφj + ν∇φi · ∇φj) ,

and

Ñij =

∫
Ω

(
1

2
a · ∇φiφj −

1

2
a · ∇φjφi

)
, with a(x, y) = 2π

(
0.1− y
x− 0.5

)
.

The positive definiteness of M is guaranteed by the assumption that c0 and ν are positive.

Choice of preconditioners. For our numerical study, three preconditioners are consid-
ered:

• H = I the identity matrix,

• H = M−1 the inverse of M, the symmetric part of A, and

• H = HDD, a domain decomposition (DD) preconditioner based on a partition of the
mesh into N = 16 subdomains (as shown in Figure 2–Right).

The choice of H = M−1 was used, e.g., in [1]. It is also a fundamental feature of the CGW
method [7, 26, 28], and was successfully used recently for the solution of Port-Hamiltonian
systems [13].

For H = HDD, The condition number of the resulting preconditioned operator is bounded
by

κ(HDDM) ≤ k0

(
1 +

k0

τ ′

)
,

where k0 denotes the maximal number of subdomains that each mesh element belongs to [21,
Theorem 4.40] and τ ′ is a parameter that has been set to 0.15. The constant in the bound
does not depend on the total number N of subdomains or the mesh parameter h.

In detail, HDD is the Additive Schwarz domain decomposition method with the GenEO
coarse space [23, 24]. The partition of Ω into N subdomains Ωs is computed automatically
by Metis. One layer of overlap is added to each Ωs. Letting Rs

> (s = 1, . . . , N) denote
the prolongation by zero of local finite element functions (in Ωs) to the whole of Ω, the
preconditioner can be written as

HDD = Π

N∑
s=1

R>s (RsMR>s )−1︸ ︷︷ ︸
local solves

RsΠ
> + R>0 (R0MR>0 )−1︸ ︷︷ ︸

coarse solve

R0,

where Π = I − R>0 (R0MR>0 )−1R0M is the coarse projector (also known as a deflation
operator) and the vectors in R>0 span the coarse space (or deflation space). The particularity
of GenEO is that the coarse vectors are constructed by solving the low frequency eigenmodes
for a generalized eigenvalue problem in each subdomain.

Deflation Operator. We aim to illustrate the convergence result in Theorem 6. Once M
and N have been assembled by FreeFem++, they are imported into Octave. The generalized
eigenvalue problem (4) (i.e., Nz(j) = λjMz(j)) is partially solved by eigs: the eigenpairs
corresponding to the eigenvalues of largest magnitude are approximated. The eigenpairs are
ordered in decreasing order of magnitude of λj . Since our problem is real-valued, the eigenvec-
tors can be grouped into complex conjugate pairs and we apply the strategy from Theorem 7 to
obtain real-valued deflation operators. The Octave command is Z = [real(V(:,1:2:m)),

imag(V(:,1:2:m))], where the columns of V are the sorted eigenvectors and m is the (even)
number of vectors that should form the deflation space. Finally, we set Y = HAZ and
compute the deflation operators as in Definition 1.

Remark 7. When H = HDD is applied, the preconditioner already contains a deflation oper-
ator Π which corresponds to a deflation space formed by eigenvectors of frequency less than a
chosen τ ′ of well chosen eigenproblems in the subdomains. The presence of a deflation oper-
ator and deflation space in HDD does not interfere with the computation of a deflation space
and deflation operator following the definition in Definition 2.
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Quantities of interest. We report the number of iterations needed for WPD-GMRES
to achieve convergence from a zero initial vector, with the preconditioners and deflation
operators introduced above, and the weight matrix W = H. The stopping criterion is
‖ri‖H < 10−10‖b‖H. We also report the upper bound for θ predicted by Theorem 6 (case 1)
as well as the corresponding experimental value

θth =
1

κ(HM)
× 1

1 + |λm+1|2
and θexp = min

i

{
1− ‖ri+1‖2H

‖ri‖2H

}
.

The threshold τ in the theoretical bound has been substituted for |λm+1|, the modulus of
the largest eigenvalue not used for the deflation space. In order to compute θth, κ(HM) is
approximated by solving a linear system for matrix M preconditioned by H with PCG and
taking the ratio of the Ritz values. The theorem guarantees that θth ≤ θexp and this has
indeed been the case for every single one of our numerical experiments.
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Figure 3: |λ1| to |λ3000| in log scale (solution of (4))

m 0 10 50 100 200 500 1000
|λm+1| 0.65 0.32 0.18 0.13 0.09 0.06 0.04

θth for H = M−1 0.71 0.91 0.97 0.98 0.991 0.997 0.998
θth for H = HDD 0.043 0.056 0.0597 0.0605 0.0610 0.0614 0.0615
θth for H = I 7.1e-05 9.2e-05 9.8e-05 9.9e-05 1.001e-04 1.007e-04 1.009e-04

Table 1: If m is the rank of the deflation space, the second line is the modulus of the first eigenvalue
not included in the deflation space, and the next three lines correspond to the theoretical bound
θth for out three choices of preconditioner.

Results for η = 1. For this test case, we use a mesh with 63658 triangles and 32158 ver-
tices. Once the homogeneous Dirichlet boundary condition has been treated by elimination,
the problem has 31502 degrees of freedom. The parameter in the convection field is η = 1 so
that A = M + N, with N = Ñ. We first solve generalized eigenproblem (4). The spectrum
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is represented in Figure 3 where the magnitudes of the 3000 largest (purely imaginary) eigen-
values are represented. It is slightly disappointing that the distribution of eigenvalues does
not consist in a cluster of large eigenvalues and a tail of eigenvalues tightly clustered around
0. This would indeed have been ideal for selecting a value of τ to compute the deflation space
with the formula in Definition 2. Table 1 gives the value of |λm+1| for a few choices of m as
well as the resulting bounds for θ. In these bounds we have injected the approximate condition
number κ(HM) which takes the following values

κ(IM) = 9896.4, κ(HDDM) = 16.241, and κ(M−1M) = 1.

We now solve the problem with all three preconditioners and varying ranks m of the de-
flation spaces. The case m = 0 corresponds to weighted and preconditioned GMRES with no
deflation. The largest deflation space has rank 1000 which corresponds to 3.2% of the total
number of degrees of freedom (dofs). The convergence curves are shown in Figure 4. We ob-
serve that our choice of deflation space indeed improves convergence: when the deflation space
gets larger, the number of iterations is reduced. Since the case is only mildly nonsymmetric
(ρ(M−1N) = 0.65), the two good preconditioners for M also give good results for the full
problem even with m = 0. For H = I, though, the effect of deflation is welcome: deflating
10 vectors reduces the iteration count from 671 to 543 and deflating 50 vectors reduces the
iteration count from 671 to 440.

Results for η = 100. Next we change the value of η to 100. The global matrix is now
A = M + N with N = 100Ñ, and the problem is much more nonsymmetric. The eigenvalues
arising from (4) get multiplied by 100 which has the effect of seriously deteriorating the bounds
for θ. Figure 5 shows the convergence curves in this case. Again, we confirm that applying
a preconditioner tailored for the symmetric part is a good idea (with 341 or 352 iterations
instead of 1276). In the non-preconditioned case, it occurs that the non-deflated problem
converges the fastest. This is surprising but does not contradict the theory. Figure 6 shows
the first 1000 residuals in this case for m= 0 and m= 100. It can be observed that deflation
initially accelerates convergence, particularly where it is slowest. However, after roughly 500
iterations, the non-deflated algorithm is faster. For H = HDD or M−1, convergence improves
when more vectors are added to the deflation space. With H = M−1, deflating 10 vectors
reduces the iteration count from 341 to 331 and deflating 100 vectors reduces it further to
259. With H = HDD, deflating 10 vectors reduces the iteration count from 352 to 343 and
deflating 100 vectors reduces it further to 275.

Influence of the mesh. We consider the case where η = 100 and H = HDD with varying
mesh size. The stopping criterion is as before, ‖ri‖H/‖r0‖H = ‖ri‖H/‖b‖H < 10−10. The
three considered meshes are the 32158 vertex mesh that was used in the tests above as well as
the two less refined meshes represented in Figure 1 (2373 and 8643 vertices). After elimination
of the degrees of freedom on the boundary, the resulting linear systems have respectively 31502,
8307 and 2197 dofs. The problem is solved by WPD-GMRES without deflation (m = 0 and
with deflation of m = 100 vectors). The results are presented in Table 2. We notice that the
iteration counts increase weakly with the mesh size. For example, from 236 for 2,197 dofs to
275 for 32,502 dofs in the case where 100 vectors are deflated. We also report on the quantities
that appear in the convergence bounds: κ(HDDM), |λ1| = ρ(M−1N) and |λ101|. We know
from the theory in [24] that κ(HDDM) is bounded independently of the mesh size and we
indeed notice that it does not depend very much on the mesh. In [22, Section 5], it was proved
that for this particular PDE, |λ1| = ρ(M−1N) is also bounded independently of the mesh size
by

ρ(M(A)−1N(A)) ≤ 1

2

‖a‖L∞(Ω)√
inf(ν) inf(c0 + 1

2
div(a))

= 3.23η = 323. (11)

The bound is satisfied here and ρ(M−1N) does not depend on the mesh. For |λ101|, we have
no theoretical results (except of course that |λ101| ≤ ρ(M(A)−1N(A))) and we observe a small
increase when the number of dofs increases.
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m iter θth θexp
0 15 7.059e-01 7.956e-01

10 11 9.071e-01 9.685e-01
50 9 9.697e-01 9.912e-01

100 8 9.835e-01 9.951e-01
200 7 9.914e-01 9.975e-01
500 7 9.965e-01 9.990e-01

1000 6 9.984e-01 9.995e-01
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m iter θth θexp
0 43 4.346e-02 5.314e-01

10 41 5.585e-02 5.539e-01
50 38 5.970e-02 5.977e-01

100 38 6.055e-02 5.978e-01
200 36 6.104e-02 5.834e-01
500 34 6.136e-02 6.183e-01

1000 32 6.147e-02 6.017e-01
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m iter θth θexp
0 671 7.133e-05 1.658e-02

10 543 9.166e-05 2.998e-02
50 440 9.798e-05 4.152e-02

100 400 9.938e-05 4.772e-02
200 369 1.002e-04 5.229e-02
500 321 1.007e-04 6.847e-02

1000 282 1.009e-04 8.047e-02

Figure 4: Convergence curves when η = 1 with varying preconditioner and rank of deflation space
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100 275 3.644e-04 6.712e-02
200 226 7.016e-04 1.029e-01
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m iter θth θexp
0 1276 2.424e-08 4.447e-03

10 1740 9.858e-08 3.898e-03
50 1863 3.219e-07 4.036e-03

100 1835 5.980e-07 4.058e-03
200 1865 1.151e-06 5.914e-03
500 1688 2.825e-06 7.266e-03

1000 1470 5.828e-06 9.225e-03

Figure 5: Convergence curves when η = 100 with varying preconditioner and rank of deflation
space
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Figure 6: Zoom on the first 1000 iterations in the case H = I and η = 100.

# dofs Iter κ(HDDM) |λ1| = ρ(M−1N) |λ101|
m = 0 m = 100

2,197 316 236 14.4 64.4 11.5
8,307 343 267 14.2 64.5 12.7

32,502 352 275 13.0 64.6 13.0

Table 2: For η = 100 and H = HDD, three mesh sizes are considered

Comparison with left preconditioned and deflated GMRES. As a final test
we examine whether GMRES with the same preconditioner (applied on the left) and defla-
tion operator but without the change of inner product exhibits the same convergence be-
havior as WPD-GMRES (i.e., preconditioned and deflated GMRES in the H-inner prod-
uct). To this end we solve the same problem twice: once with WPD-GMRES and once
with preconditioned and deflated GMRES. In both cases the stopping criterion is set to
‖Hri‖/‖Hr0‖ = ‖Hri‖/‖Hb‖ < 10−10 where ‖ · ‖ is the Euclidean norm. As an illustration,
we choose the problem with 8,307 dofs and set H = HDD. Problems with (η ∈ {0.1, 1, 10, 100})
are solved without deflation and with deflation of 100 vectors. The iteration counts can be
found in Table 3. The fact that the number of iterations is nearly identical in the weighted
and unweighted cases is remarkable. The iteration count for the unweighted method is always
the smallest. This is due to the fact that the chosen stopping criterion is precisely the norm
that is minimized by the unweighted method. In Figure 7 we plot the history of residual
‖Hri‖/‖Hr0‖ for η = 100. Again, we observe a strong similarity and the minimization prop-
erty of GMRES ensures that in this norm, the residual for W = I will always be below the
residual for W = H.

η m = 0 m = 100
W = I W= H W = I W= H

0.1 36 37 33 33
1 40 40 33 34

10 89 90 54 54
100 327 329 253 255

Table 3: Iteration counts for weighted and unweighted algorithms. Both algorithms use the stop-
ping criterion coming from the unweighted algorithm
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Figure 7: Comparison of weighted and unweighted algorithms, without deflation and with deflation
of 100 vectors. The chosen norm is the one that is minimized by the unweighted algorithm

9 Conclusions

We present a very general convergence bound for preconditioned GMRES when any inner
product is used, and when it is deflated. We consider bounds for several generic cases for the
deflation space. These bounds inspired us to produce an effective deflation space, namely, the
eigenvectors of the generalized eigenvalue problem Nz = λMz, where M is the Hermitian part
of A, which is assumed to be positive definite, and N is the skew-Hermitian part of A. Only
eigenvectors corresponding to eigenvalues with muduli above a given threshold are selected.
Numerical experiments illustrate the potential for these ideas. Deflating indeed reduces the
number of iterations, and so do the preconditioners combined with the deflation. On the
other hand, while our theory applies to any inner product, our experiments do not show an
improvement with our choices of the weights.

References

[1] Z. Bai, J. Yin, and Y. Su. A shift-splitting preconditioner for non-Hermitian positive
definite matrices. J. Comput. Math., 24:539–552, 2006.

[2] M. Benzi. Preconditioning techniques for large linear systems: A survey. J. Comp. Phys.,
182:418–477, 2002.

[3] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIAM J. Matrix
Anal. Appl., 18:37–51, 1997.

[4] K. Burrage, J. Erhel, B. Pohl, and A. Williams. A deflation technique for linear systems
of equations. SIAM J. Sci. Comput., 19:1245–1260, 1998.

[5] T. F. Chan, E. Chow, Y. Saad, and M. C. Yeung. Preserving symmetry in preconditioned
Krylov subspace methods. SIAM J. Sci. Comput., 20:568–581, 1999.

[6] A. Chapman and Y. Saad. Deflated and augmented Krylov subspace techniques. Numer.
Linear Algebra Appl., 4:43–66, 1997.

[7] P. Concus and G. H. Golub. A generalized conjugate gradient method for nonsymmetric
systems of linear equations. In R. Glowinski and J.-L. Lions, editors, Computing methods



Convergence Analysis Leading to a New Deflation Space 20

in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975), Part
1, volume 134 of Lecture Notes in Econom. and Math. Systems, pages 56–65. Springer,
Berlin, 1976.

[8] M. Embree, R. B. Morgan, and H. V. Nguyen. Weighted inner products for GMRES and
GMRES-DR. SIAM J. Sci. Comput., 39:S610–S632, 2017.

[9] Y. A. Erlangga and R. Nabben. Deflation and balancing preconditioners for Krylov sub-
space methods applied to nonsymmetric matrices. SIAM J. Matrix Anal. Appl., 30:684–
699, 2008.

[10] A. Essai. Weighted FOM and GMRES for solving nonsymmetric linear systems. Numer.
Algorithms, 18:277–292, 1998.
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